Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Immunol ; 15: 1327503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449873

RESUMEN

Background: Numerous observational studies have identified a linkage between the gut microbiota and gastroesophageal reflux disease (GERD). However, a clear causative association between the gut microbiota and GERD has yet to be definitively ascertained, given the presence of confounding variables. Methods: The genome-wide association study (GWAS) pertaining to the microbiome, conducted by the MiBioGen consortium and comprising 18,340 samples from 24 population-based cohorts, served as the exposure dataset. Summary-level data for GERD were obtained from a recent publicly available genome-wide association involving 78 707 GERD cases and 288 734 controls of European descent. The inverse variance-weighted (IVW) method was performed as a primary analysis, the other four methods were used as supporting analyses. Furthermore, sensitivity analyses encompassing Cochran's Q statistics, MR-Egger intercept, MR-PRESSO global test, and leave-one-out methodology were carried out to identify potential heterogeneity and horizontal pleiotropy. Ultimately, a reverse MR assessment was conducted to investigate the potential for reverse causation. Results: The IVW method's findings suggested protective roles against GERD for the Family Clostridiales Vadin BB60 group (P = 0.027), Genus Lachnospiraceae UCG004 (P = 0.026), Genus Methanobrevibacter (P = 0.026), and Phylum Actinobacteria (P = 0.019). In contrast, Class Mollicutes (P = 0.037), Genus Anaerostipes (P = 0.049), and Phylum Tenericutes (P = 0.024) emerged as potential GERD risk factors. In assessing reverse causation with GERD as the exposure and gut microbiota as the outcome, the findings indicate that GERD leads to dysbiosis in 13 distinct gut microbiota classes. The MR results' reliability was confirmed by thorough assessments of heterogeneity and pleiotropy. Conclusions: For the first time, the MR analysis indicates a genetic link between gut microbiota abundance changes and GERD risk. This not only substantiates the potential of intestinal microecological therapy for GERD, but also establishes a basis for advanced research into the role of intestinal microbiota in the etiology of GERD.


Asunto(s)
Reflujo Gastroesofágico , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/genética , Estudio de Asociación del Genoma Completo , Análisis de la Aleatorización Mendeliana , Reproducibilidad de los Resultados , Reflujo Gastroesofágico/genética , Clostridiales
3.
Eur J Med Chem ; 245(Pt 1): 114898, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36370552

RESUMEN

50 New drugs including 36 chemical entities and 14 biologics were approved by the U.S. Food and Drug Administration during 2021. Among the marketed drugs, 31 new small molecule agents (29 small molecule drugs and 2 diagnostic agents) with privileged structures and novel clinical applications represent as promising leads for the development of new drugs with the similar indications and improved therapeutic efficacy. This review is mainly focused on the clinical applications and synthetic methods of 29 small molecule drugs newly approved by the FDA in 2021. We believed that insight into the synthetic approaches of drug molecules would provide creative and practical inspirations for the development of more efficient and practical synthetic technologies to meet with new drug discovery.


Asunto(s)
Productos Biológicos , Aprobación de Drogas , Preparaciones Farmacéuticas , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Productos Biológicos/química , Descubrimiento de Drogas , Preparaciones Farmacéuticas/síntesis química , Preparaciones Farmacéuticas/química , Estados Unidos , United States Food and Drug Administration , Humanos
4.
Foods ; 11(9)2022 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-35564025

RESUMEN

Ovalbumin (OVA) is a common carrier with high efficiency to deliver flavonoids. The aim of this study was to investigate the interaction mechanism of OVA and four flavonoids (quercetin (Que), myricetin (Myri), isorhamnetin (Ish), and kaempferol (Kaem)) with similar structures by fluorescence spectra, SDS-PAGE, FT-IR, and molecular docking analysis, and the effect on the antioxidant abilities of flavonoids was also evaluated. Results indicated that the antioxidant activity of flavonoids was positively correlated to the number of phenolic hydroxyl groups of on the B-ring, and weakened when the C-3' position was replaced by a methoxy group. The addition of OVA enhanced the antioxidant activity of Que/Kaem, while it masked the antioxidant activity of Myri. The formation of Que/Myri/Ish/Kaem-OVA complexes was a spontaneous exothermic process driven mainly by hydrogen bond and van der Waals force, which could result in the change in OVA conformation and induce the transformation of α-helix to ß-sheet. Among these, Kaem exhibited the strongest binding ability with OVA, and showed the greatest impact on the secondary and conformational structure of OVA, followed by Que. The hydroxylation of C-3' and methoxylation of C-5' weaken the interaction of Kaem with OVA. Molecular docking analysis suggested that Que, Myri, Ish, and Kaem formed six, three, five, and four hydrogen bonds with OVA, and the number of hydrogen bonds was not positively correlated with their binding constants. Our findings can provide a theoretical basis for the application of OVA on improving the antioxidant activity of flavonoids, and may help to explain the delivery efficiency of OVA on different bioactive constituents.

5.
Eur J Pharmacol ; 886: 173472, 2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-32860809

RESUMEN

Endothelial-mesenchymal transition (EndMT) is a process in which endothelial cells lose their specific morphology/markers and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in the progression of cardiovascular diseases such as cardiac fibrosis and cardiac dysfunction. Recent study indicated that puerarin could inhibit EndMT against cardiac fibrosis. However, the precise role of puerarin in EndMT and the underlying molecular mechanisms remain unclear. EndMT was induced by H2O2 (150 µM) in human coronary artery endothelial cells (HCAECs). HCAECs were exposed to H2O2 for six days with or without puerarin pretreated 2 h. The protein changes of EndMT markers (CD31, VE-cadherin, FSP1 and α-SMA) in HCAECs were detected. The levels of phosphoinositide-3-kinase (PI3K) and protein kinase B (AKT) proteins were analyzed by Western Blot. Wound healing and transwell assay were carried out to examine cell chemotaxis. Puerarin mitigated H2O2-induced EndMT as indicated by alleviating the reduced expression of CD31 and VE-cadherin and inhibiting the upregulation of α-SMA and FSP1. Furthermore, the mechanisms study showed that puerarin activated the PI3K/AKT pathway by inhibiting reactive oxygen species and further attenuated EndMT. On the other hand, PI3K inhibitor LY294002 reversed this effect imposed by puerarin. Puerarin alleviated the migration of mesenchymal-like cells through reducing MMPs protein expression. These results implicated that puerarin exhibited cytoprotective effects against H2O2-induced EndMT in HCAECs through alleviating oxidative stress, activating the PI3K/AKT pathway and limiting cell migration.


Asunto(s)
Vasos Coronarios/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Isoflavonas/farmacología , Proteína Oncogénica v-akt/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Línea Celular , Movimiento Celular/efectos de los fármacos , Cromonas/farmacología , Vasos Coronarios/citología , Humanos , Peróxido de Hidrógeno/farmacología , Morfolinas/farmacología , Oxidantes/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Especies Reactivas de Oxígeno/metabolismo , Cicatrización de Heridas/efectos de los fármacos
6.
Biochem Biophys Res Commun ; 525(3): 759-766, 2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32145915

RESUMEN

Formononetin (FN), a methoxy isoflavone abundant in many plants and herbs, has been evidently proven to possess multiple medicinal properties. Our study aimed to clarify the impact of FN on myocardial ischemia/reperfusion (I/R) injury (MIRI) and the involved mechanism. A rat model of MIRI was produced by ligation and loosening of the left anterior descending (LAD) branch of the coronary artery. Rats received 10 and 30 mg/kg of FN when the reperfusion started. At 24 h after surgery, cardiac function, infarct size, and sera levels of the cardiac markers and inflammatory mediators were measured. To mimic the inflammasome activation in cardiomyocytes, neonatal rat cardiomyocytes (NRCMs) were cultured and treated with lipopolysaccharide (LPS) plus nigericin. Cell death and reactive oxygen species (ROS) were determined. Myocardial expression and activation of the nucleotide-binding domain and leucine-rich repeat-containing protein 3 (NLRP3) inflammasome in rats were examined by western blotting. The level of thioredoxin interacting protein (TXNIP)-NLRP3 interaction was assessed. FN notably attenuated cardiac dysfunction, infarct size, release of cardiac markers, and elevation of TNF-α, IL-1ß, and IL-6. FN alleviated LPS plus nigericin-induced injury and ROS increase in NRCMs. Western blotting revealed that FN suppressed the activation of NLRP3 inflammasome and TXNIP-NLRP3 interaction in rats. These findings indicate that FN ameliorated MIRI in rats and inhibited the activation of the NLRP3 inflammasome, at least partially, attributable to suppression of the ROS-TXNIP-NLRP3 pathway.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Isoflavonas/uso terapéutico , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Pruebas de Función Cardíaca , Inflamasomas/metabolismo , Inflamación/patología , Isoflavonas/química , Isoflavonas/farmacología , Lipopolisacáridos , Masculino , Daño por Reperfusión Miocárdica/patología , Daño por Reperfusión Miocárdica/fisiopatología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Nigericina , Unión Proteica/efectos de los fármacos , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
7.
Molecules ; 23(12)2018 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-30558188

RESUMEN

Puerarin is a well-known traditional Chinese medicine which has been used for the treatment of cardiovascular diseases. Recently, a new advantageous crystal form of puerarin, puerarin-V, has been developed. However, the cardioprotective effects of puerarin-V on myocardial infarction (MI) heart failure are still unclear. In this research, we aim to evaluate the cardioprotective effects of puerarin-V on the isoproterenol (ISO)-induced MI mice and elucidate the underlying mechanisms. To induce MI in C57BL/6 mice, ISO was administered at 40 mg/kg subcutaneously every 12 h for three times in total. The mice were randomly divided into nine groups: (1) control; (2) ISO; (3) ISO + puerarin injection; (4⁻9) ISO + puerarin-V at different doses and timings. After treatment, cardiac function was evaluated by electrocardiogram (ECG), biochemical and histochemical analysis. In vitro inflammatory responses and apoptosis were evaluated in human coronary artery endothelial cells (HCAECs) challenged by lipopolysaccharide (LPS). LPS-induced PPAR-Υ/NF-κB and subsequently activation of cytokines were assessed by the western blot and real-time polymerase chain reaction (PCR). Administration of puerarin-V significantly inhibits the typical ST segment depression compared with that in MI mice. Further, puerarin-V treatment significantly improves ventricular wall infarction, decreases the incidence of mortality, and inhibits the levels of myocardial injury markers. Moreover, puerarin-V treatment reduces the inflammatory milieu in the heart of MI mice, thereby blocking the upregulation of proinflammatory cytokines (TNF-α, IL-1ß and IL-6). The beneficial effects of puerarin-V might be associated with the normalization in gene expression of PPAR-Υ and PPAR-Υ/NF-κB /ΙκB-α/ΙΚΚα/ß phosphorylation. In the in vitro experiment, treatment with puerarin-V (0.3, 1 and 3 µM) significantly reduces cell death and suppresses the inflammation cytokines expression. Likewise, puerarin-V exhibits similar mechanisms. The cardioprotective effects of puerarin-V treatment on MI mice in the pre + post-ISO group seem to be more prominent compared to those in the post-ISO group. Puerarin-V exerts cardioprotective effects against ISO-induced MI in mice, which may be related to the activation of PPAR-γ and the inhibition of NF-κB signaling in vivo and in vitro. Taken together, our research provides a new therapeutic option for the treatment of MI in clinic.


Asunto(s)
Isoflavonas/uso terapéutico , Isoproterenol/toxicidad , Infarto del Miocardio/inducido químicamente , FN-kappa B/metabolismo , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Animales , Vasos Coronarios/citología , Electrocardiografía , Células Endoteliales/efectos de los fármacos , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Factor de Necrosis Tumoral alfa/metabolismo
8.
Int J Biol Sci ; 13(8): 1067-1081, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28924387

RESUMEN

The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFß1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFß1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Pulmón/citología , Polifenoles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Western Blotting , Ácidos Cafeicos/farmacología , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Humanos , Hipertensión Pulmonar/metabolismo , Inmunohistoquímica , Lactatos/farmacología , Masculino , Factor 2 Relacionado con NF-E2/metabolismo , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo , Remodelación Vascular/efectos de los fármacos
9.
Eur J Pharmacol ; 788: 226-233, 2016 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-27346833

RESUMEN

As a Rho kinase (ROCK) inhibitor, fasudil has been used in clinical trials of several cardiovascular diseases. This study was to investigate the vasorelaxant effect of fasudil on resistance arterial rings including mesenteric, renal, ventral tail and basilar artery. We also examined the potential mechanisms of its vasodilatory action using mesenteric artery rings. A DMT multiwire myograph system was used to test the tension of isolated small arteries. K(+) channel blockers, NO-cGMP pathway blockers and Ca(2+)-free physiological salt solution (PSS) were employed to verify the underlying mechanisms. Fasudil (10(-7)-10(-4)M) relaxed four types of small artery rings pre-contracted by 60mmol/l KCl (pEC50: 6.01±0.09, 5.47±0.03, 5.54±0.04, and 5.72±0.10 for mesenteric, renal, ventral tail and basilar artery rings, respectively). Pre-incubation with fasudil (1, 3, or 10µmol/l) attenuated KCl (10-60mmol/l) and angiotensin II (Ang II; 1µmol/l)-induced vasoconstriction in mesenteric artery rings. Fasudil at the concentration of 10(-6)mol/l showed different relaxant potency in endothelium intact (pEC50:6.01±0.09) or denued (5.75±0.06) mesenteric artery. The influx and release of Ca(2+) were inhibited by fasudil. In addition, fasudil could block the increased phosphorylation level of myosin light chain (MLC) and myosin-binding subunit of myosin phosphatase (MYPT1) induced by Ang II. However, pretreatment with various K(+) channel blockers did not affect the relaxant effects of fasudil remarkably. The present results demonstrate that fasudil has a vasorelaxant effect on isolated rat resistance arteries, including mesenteric, renal, ventral tail and basilar artery, and may exert its action through the endothelium, Ca(2+) channels, and the Rho/ROCK pathway.


Asunto(s)
1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/análogos & derivados , Canales de Calcio/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/fisiología , Vasodilatación/efectos de los fármacos , Quinasas Asociadas a rho/metabolismo , 1-(5-Isoquinolinesulfonil)-2-Metilpiperazina/farmacología , Angiotensina II/farmacología , Animales , Relación Dosis-Respuesta a Droga , Endotelio Vascular/efectos de los fármacos , Masculino , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Cloruro de Potasio/farmacología , Proteína Fosfatasa 1/metabolismo , Ratas
10.
Acta Pharmacol Sin ; 37(6): 772-82, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27180980

RESUMEN

AIM: The current therapeutic approaches have a limited effect on the dysregulated pulmonary vascular remodeling, which is characteristic of pulmonary arterial hypertension (PAH). In this study we examined whether salvianolic acid A (SAA) extracted from the traditional Chinese medicine 'Dan Shen' attenuated vascular remodeling in a PAH rat model, and elucidated the underlying mechanisms. METHODS: PAH was induced in rats by injecting a single dose of monocrotaline (MCT 60 mg/kg, sc). The rats were orally treated with either SAA (0.3, 1, 3 mg·kg(-1)·d(-1)) or a positive control bosentan (30 mg·kg(-1)·d(-1)) for 4 weeks. Echocardiography and hemodynamic measurements were performed on d 28. Then the hearts and lungs were harvested, the organ indices and pulmonary artery wall thickness were calculated, and biochemical and histochemical analysis were conducted. The levels of apoptotic and signaling proteins in the lungs were measured using immunoblotting. RESULTS: Treatment with SAA or bosentan effectively ameliorated MCT-induced pulmonary artery remodeling, pulmonary hemodynamic abnormalities and the subsequent increases of right ventricular systolic pressure (RVSP). Furthermore, the treatments significantly attenuated MCT-induced hypertrophic damage of myocardium, parenchymal injury and collagen deposition in the lungs. Moreover, the treatments attenuated MCT-induced apoptosis and fibrosis in the lungs. The treatments partially restored MCT-induced reductions of bone morphogenetic protein type II receptor (BMPRII) and phosphorylated Smad1/5 in the lungs. CONCLUSION: SAA ameliorates the pulmonary arterial remodeling in MCT-induced PAH rats most likely via activating the BMPRII-Smad pathway and inhibiting apoptosis. Thus, SAA may have therapeutic potential for the patients at high risk of PAH.


Asunto(s)
Ácidos Cafeicos/uso terapéutico , Medicamentos Herbarios Chinos/uso terapéutico , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/fisiopatología , Lactatos/uso terapéutico , Arteria Pulmonar/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Ácidos Cafeicos/química , Medicamentos Herbarios Chinos/química , Corazón/efectos de los fármacos , Corazón/fisiopatología , Hipertensión Pulmonar/inducido químicamente , Hipertensión Pulmonar/patología , Lactatos/química , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/fisiología , Masculino , Monocrotalina , Miocardio/patología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , Ratas , Ratas Sprague-Dawley , Salvia miltiorrhiza/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...